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o,, - Y 
1 Z,m- I, (28) 

Thus the temperature length scale is proportional to the 
velocity length scale I,(x), and 0, - (u,U,). 

The lower and upper limits of m correspond to 0, - Y ’ A 
and B0 - x-Ii*, respectively. This latter variation coincides 
with that which applies to a heated plane turbulent jet (e.g. 
Davies et al. [4]) for which 1”( - 1,) varies approximately 
linearly. It should be noted that Townsend’s conclusion [2] 
that the temperature scale must be proportional to the 
velocity scale (6’” - uO) is incorrect due to an erroneous 
statement of the conservation of momentum (for 1 u. 1 -x CT,). 

For the case where C, = C,, Li,, a0 and I, admit exponen- 
tial type solutions and it can be shown that 

[(I - e - 3 2(0,X) _ 1 01 (29) 

0” - e ’ 2(=~x) c ,,,[J,. WV 

Again, the conclusions of the previous paragraph remain 
valid for this case. 

It is worthwhile to enquire whether the equation for the 
intensity of temperature fluctuation analogous to equation 

(9) is satisfied by the self-preserving distributions of 7: a0 and 

(31) 

Note that, since 1, - I,, no distinction is now made between [ 

and n. The equation for Oz.!2 

reduces to, neglecting terms of O((u,;‘U, )l), 

2C,k,, - czr& + $& + /I;, + eR = 0. 

Clearly. no new constraint emerges from (32) and the 
equation of the mean squared temperature fluctuation is 
satisfied by the assumed self-preserving forms in (31). 

For an axisymmetric small-perturbation turbulent jet it is 
easy to show, using an approach analogous to that developed 
in [I] for the treatment of flow without heat transfer, that 

since ([I]) 

and -z 3 ug-Y , irrespective of the value of M 
(- 5 2 m I - f). There seems to be little if no experimental 
evidence available to support equations (28) or (33). The data 
obtained by Antonia and Bilger [5] in a heated round jet in a 
coflowing stream with no pressure gradient (the jet to 
external stream velocity ratio was 3) indicate that 0, 6 .Y- ’ 

while (33) yields fIO - x _ *‘3. In this experiment, m is zero and 
therefore outside the range --$ I M I -f while the con- 
dition 1 u. 1 << U, is not satisfied. At the last measurement 
station (the flow was still turbulent) a,, z 0.15 U,. 
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\OMENCI.Al’URE 

interfacial area per unit mixture volume; 
channel cross-sectional area ; 

distribution coefficients (defined in text); 

body force on k-phase per unit mixture volume, 
z-component ; 
frictional drag force on k-phase per unit mixture 
volume due to channel wall ; 
body force per unit mass of k-phase; 
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r, space vector; 
r*, non-dimensional radial coordinate, r/R (R = 

pipe radius) ; 

fit 
time ; 

At;, 
total time interval for Eulerian time-averaging; 
k-phase time interval; 

Uk> %> k-phase velocity vector, axial velocity ; 
(LL (%)3, cross-sectional-average, volume-average 

axial velocities, k-phase ; 
USIS sonic velocity in k-phase; 
z, axial coordinate. 

Greek symbols 

@k? (akh, <ak>3y local, cross-sectional-average, volume- 
average, k-phase fraction [ak(r, t) = At,(r, t)/At] ; 

VCI.. coefficient for interfacial viscous drag term ; 

Pk, density of k-phase ; 
PY coefficient for added mass term; 
% coefficient for form drag term ; 

?Ik, viscous stress tensor, k-phase. 

1. INTRODUCTION 

A GREAT deal of attention has been focused in recent years on 
the character of two-phase (specially liquid-gas) flow con- 
servation equations. Generally, the time- or ensemble- 
averaged and space-averaged transient one-dimensional 
form of the equations derived from the local, instantaneous 
equations (Delhaye and Achard [l], Ishii [Z]) are of interest. 
These averaged forms are, however, often mathematically ill- 
posed as initial value problems (IVP) as indicated by the 
occurrence of complex characteristic roots (Gidaspow [3], 
Lyczkowski et al. [4]). Since the flow system under con- 
sideration represents a propagation problem, it can indeed be 
argued that the proper governing equation set should be non- 
elliptic [5] and therefore complex characteristic roots should 
not occur. Attempts to solve mixed hyperbolic-elliptic equa- 
tion sets as initial value problems would lead to errors unless 
artificial stabilization is introduced into the solution scheme 
or computations are terminated prior to excessive error 
growth. 

Addition of new terms and/or modification of existing 
terms, often on the basis of physical reasoning, have been 
suggested by various investigators in their efforts to render 
the governing equation sets well-posed as IVP. As examples, 
terms representing relative acceleration between the phases 
(Lyczkowski et al. [4]), inertial coupling between the phases 
(Soo [6], Chao et al. [7]), interfacial pressure forces (Stuhmil- 
ler [S]), unequal phase pressures (Banerjee. et al. [9]), and 
surface tension,effects (Ramshaw and Trapp [lo]) have been 
considered. In this paper, we incorporate the transverse 
intraphase velocity profiles and transverse phase fraction 
distributions into the averaged form of the governing equa- 
tions obtained by Eulerian time-averaging and volume- 
averaging of the local instantaneous equations and dem- 
onstrate their important influence on the character of the 
equation set. Introduction ofintraphase transverse profiles of 
axial velocities and phase fraction distributions is really the 
incorporation, into the governing equations, of the sub- 
volume element-scale information that would otherwise be 
lost due to the space-averaging operation. Example cases of 
annular air-water flow based on works by Calvert and 
Williams [ll] and Hewitt and Hall-Taylor [12], and of 
bubbly air-water flow based on studies by Delhaye and 
Galaup [13] and Sato and Sekoguchi [14] are adopted for 
demonstration. 

t AZ is to be small relative to the pertinent length scales of 
transients of interest. It can be made infinitesimally small 
(AZ --+ 0) since Eulerian time-averaging followed by cross- 
sectional-averaging would still enable consideration of in- 
terfacial pressure distribution effects [S]. 

FIG. 1. Vertical upflow of gas-liquid bubbly mixture; trans- 
verse intraphase axial velocity profiles and local gas fraction 

distribution (schematic; AZ + 0 allowed). 

2. THE GOVERNING EQUA IIONS 

We consider adiabatic turbulent flow with no heat or mass 
transfer between the liquid and gas phase. A frame of reference 
fixed with respect to the flow channel is adopted. We begin 
with the local, instantaneous differential mass and linear 
momentum conservation equations for each phase (k = 
G,L): 

aPk 
x (rr t) + v [ukk h(r, t)l = 0 

$ bk(r, t)uk(r, t)l + v ["k(r9 t)pk(r? t)"k(r, t)] 

= v [-pkh t)l + Xk(rr d] + Pkgk. (2) 

Let us consider vertical upflow in a pipe of constant cross- 
section. Performing the operations of Eulerian time- 
averaging [2] and averaging over a volume element 
Av( = Ax-s. AZ, Fig. 1)t fixed with respect to the frame of 
reference, equation (1) can be written, separately for two 
phases, per unit mixture volume as : 

The axial (z) component of equation (2) can be written for the 
two phases, per unit mixture volume, as (with the aid of 
interfacial momentum jump condition): 

(5) 
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i 

3 

+ I&L(%)3 
We further assume that the axial pressure gradients are 

equal for the two phases: 

The coefficients F) and p depend on the prevalent Bow 
Also : 

structure (regime). The added mass term, derived on the basis (ff,),fz,t) + (r,),(-_.it -= I. iI(jt 
ofinterfacial pressure distribution in [8]. is somewhat similar 
in form to the inertial coupling term in [6,7]. 

The &comoonent of the momentum eauation (2) is 
eliminated by assuming azimuthal symmetry. In the present 
work, we replace the r-component of the momentum eyua- 

3. CtlARAC-1 ER Ob Wt. I,:()1 .+ I IOUS 

tion by the assumption that the static pressure within each The average conservation equations (3)-~(h) can be wrrtten 

chase (excluding the interfaces) is uniform across the trans- in the matrix form: 

verse (~)-dimen~on. 
The distribution coefficients Cc; and C, appearing in 

equations (5) and (6) are: : 

1 

-i .I‘ a.&, t)U’Z,,(r, t)dA dz 
where U = [(~~),(~~),~~,(~~;>~J’. The characteristic root-. 

c.&, t) = !V_r?=..:L~2. ~=-. 
i., of equation (11) satisfy the relation : 

..-. 
<a,>,iz.t,cu,,>:iz,r, det/B - iAl= 0, (IS) 

a&r, z, ifu’&(r, z. r)dA 

y 
To simplify the algebraic work. equation (5) is replaced by 

,~~___. . 
(‘xG)3(Z, tKI=i(;,,>:(z,t) t7) [equation (5) -(ii;;Z)3 q e uation (3)], and equation (6) by 

[equation (6) -(r&)? equation (4)]. Sonic velocities in the 
ias and the liquid-phases are introduced via the respective 
isothermai equations of state. Assuming, for simplicity, the 
distribution coefficients to be inde~ndent of z and t, equation 
(1 Z), the characteristic equation, can then be written as : 

-0 (13) 

1 * 

--- ! Ax-s AX-\ 
xL(r, Z, t)Ei,(r,z, r)dA 

2 .~___~ ____~~ ~.. 
(JI.)3(Z,t)(~~i}:tZ,f) 

(8) 
: z represents the axial mid-plane of A.- in the event of a 

finite AZ. 

Both Cc and Cry are usually equated to 1.0 in the literature, 4 Cg(z, I) and Cf(z, t) are similarly defined with a,, and ErZ 

which is tantamount to assuming uniform velocity and phase (instead of their squares) in the integrand of the numerators 

fraction pr0files.d respectively. 
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Equation (13) is a quartic equation in d and is simpered to a 
quadratic equation for the incompressible case @so, us‘ -t 
cc). The incompressible case equation is 

J~[(aL>sCECt(<&@% + <a&Z%) + ML((a&CE 

+ <ad,CZ)l - nC<a,>:~~,(ts;;,>3Ct(2CG - CZI 
+ (ac)~(aL)3~~t(d>3c~(2C~ - (33 
+ (ac),(aL)3~~(~~~>,CrC22 
+ (~L>S%Gd3G’~~ + PFL(<~&GL~>~GCZ 

= 

Annular pow without entrainment 
A range of flow conditions were studied in [ll]. The 

following represents a particular air-water co-current verti- 
cal upflow case in a 28.4 mm dia. pipe: 

(&)s = 25.3 m s-’ . (I&~)~ = 0.631 ms-’ 
(corresponds to water film flow rate of 90.72 kg h-r); 

(ac)3 = 0.9363 ; (aL)3 = 0.0637; 

temperature = 20°C; system pressure = 1 atm. 

The thermodynamic conditions yield : 

& = 1.21 kgm-‘; &=9P8kgm-3; 

usG = 343.3 m s-r; usL = 1481 m s-‘. 

We assume that a smooth interface exists between air and 
water. The transverse intraphase axial velocity profiles are 
approximated by (Fig. 2): 

0.0 1 r* I 0.9676; 
Ir,(r*), m s-’ = 375.2268 [(l - r*)“’ + 0.2r*1258 4564 

0.9676 I r* s 0.986 ; 
EL@*), m s- 1 = 12.035 - 7.1286r* + 0.5928 In (1 - I*) 

(turbulent liquid region); 

0.986 5 r* < 1.0; 
Qr*), m s- ’ = 176.7589 (1 - r*) (viscous liquid layer). 

The phase fraction profiles are flat across the respective 
regions in this case. 

FIG. 2. Vertical turbulent upflow of air and water in annular 
configuration-smooth interface and no entrainment 

assumed. 

Table l(a) 

(i) CL = 1.3796, Cc = 1.1158 (ii) Flat transverse 
velocity profiles : 
c, = cc = 1.0 

(m s-r) (m s-r) 

/iI = -315.2066 1, = -318.0157 
& = 371.6615 i, = 368.6116 
,I3 = 0.4813 i,, = 0.6331 - j0.2246 
?.b = 1.2643 2, = 0.6331 + j0.2246 

Table l(b) 

(i) Cr. = 1.3796, C, = 1.1158 (ii) Flat transverse 

(m s-t) 

velocity profiles: 
CL = c, = 1.0 

(m s-‘) 

1, = 0.4809 ,I, = 0.6331 - j0.2241 
L, = 1.2646 1, = 0.6331 + j0.2241 

The other two roots --t co The other two roots -t x: 

The distribution coefficients are calculated to be : 

C, = 1.3796, CG = 1.1158; Ct = 1.0, C; = 1.0; 

p is equal to 0.0. The characteristic roots for the case where 
compressibiiities of the phases are taken into account are 
shown in Table l(a). The characteristic roots for the incom- 
pressible case are shown in Table l(b). 

From the tables, it is clear that incorporation of the 
transverse intraphase velocity profiles has resulted in real 
characteristic roots in both the compressible and the incom- 
pressible cases. Especially noteworthy is the substantial 
inequality in the axial velocities of the two phases. If the 
transverse velocity profiles are not taken into account, then 
the only situation for which the characteristic roots would be 
real in the present example is equal phase velocities. 

Bubbly Jlow 
(a) A case based on measurements reported by Delhaye 

and Galaup [ 131 in air-water vertical upflow in a 42 mm I.D. 
pipe is considered : 

(Z,& = 1.5921 m s-t; (U=& = 1.5863 m s-r; 

(aG)3 = 0.0544; (a& = 0.9456; 

temperature = 20°C; system pressure = 1 atm. 

The th~modynamic conditions yield : 

& = 1.21 kgm-3; pL = 998 kgmw3 

usG = 343.3ms-‘; usL = 1481 m s-*. 

The axial velocity and phase fraction profiles are approxi- 
mated as: 

o.oIr*I 1.0; t&(r*) = 2.03 (1 - I*)~‘*, m s- 1 

&Jr*) = 1.77 (1 - r*)“s, m s- r 

0.0 5 r* 2 0.50; a&*) = 0.0, a&*) = 1.0 

0.50 5 r* < 0.90; a&*) = 0.3995 (r* - 0.50) 

a&*) = (1.19975 - 0.3995r*) 

0.90 I r* 2 1.0; a&*) = 1.598 (1 - r*) 

a&*) = (1.598 r* - 0.598). 

The distribution coefficients are calculated to be: 

CL = 0.8829, Cc = 1.2125; Ct = 0.9274, Cy, = 1.1896. 
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Table 2(a) 

(i) C,, = 0.8829, C,; = 1.2125 
C: = 0.9274, CT, = I. 1896 

(ms-‘) 

(ii) Flat transverse velocity and 
phase fraction profiles: 
(1 1 ~~~ (‘<, _ cy = c; : 1 .(I 

(ms _I) 

0.4 jr./.> = 1.6926 &,0.0X31 i / 1, L I.5913 2 *,,0.001: 
0.5 1.699 I 0.0505 J 1.5914 + jO.0012 
0.6 I .7265, I .6804 1.5915 + jO.0012 
0.7 1.760, 1.6535 1.5916 i jO.OOll 
0.8 1.7772. I.6413 1.5916 + jO.0011 
1.0 I .7977. I.628 I I 5917 * j 0.0001( 

Table 2(b) 

(i) c‘,, = 0.8829, C’,, = 1.2125 (ii) C‘, = (‘(, = c: z C; = 1 0 
C’: = 0.9274, C; = l.lX96 

(m s-r) tms-‘) 

;, = -54.1719 -- 53.2877 
iL = 57.1555 56.46 I 5 
;A = I .6804 I.5915 - jO.OOlS 
1& = I .7265 1.5915 +jo.o015 

Table 3 

(i) C,, = 1.076, C,; = 1.007 (ii) C, = 1.06, C’(; = 1.06 
c: = 1.003, C:: = 0.990 c: = 1.00, C:; = 1.00 

I’ (ms-‘) (ms ‘1 

0.1 i,,;., = 0.8411,0.6617 ;.,,I., = 0.8065,0.6874 

0.2 - - 0.8401,0.7341 
0.3 0.8695,0.7446 
0.4 0.8348,0.8048 
0.5 0.8287 f j 0.01 

Treating the added mass coefficient AL as a parameter, the 
characteristic roots for the incompressible case are as shown 
in Table 2(a). The two other roots + x in each of the above 
cases. The four characteristic roots for the compressible case, 
with p = 0.6, are as shown in Table 2(b). The roots for other 
/(-values are qualitatively similar to those in Table 2(a) 

(except of course that all four roots are finite now). 
We observe that for Case (ii) the roots are imaginary for all 

values of p, whereas for Case (i) where the transverse profiles 
have been incorporated they are real for n 2 0.6. Since the 
shapes of flowing bubbles determine the value of the added 
mass coefficient (e.g. for end-on motion, 0 i IC I 0.5: 
for broad-side motion, 0.5 < p I l.O), a phenomenological 
explanation could be that the bubbles shapes here are such as 
to result in p 2 0.6. 

(b) We consider vertical upflow of isothermal air -water 
bubbly mixture in a 34.8 mm I.D. pipe, based on a study by 
Sato and Sekoguchi [14] : 

(U;;z>l = 0.9088 m 5 ’ ; <I?,,,)~ = 0.6218 m s ’ : 

(x(;)~ = 0.192: ( r,.J1 = 0.808 : 

temperature = I3 ‘C‘ : system pressure = 1.38 bar; 

Fc; = 1.682kgm-‘: br, = 999.2 kg m ‘. 

The axial velocity and phase fractton profiles are approxi- 
mated as: 

0.0 i r* 5 0.91 ; u=(,(r*) = 0.9386 m s-r, 

t?,,(r*) = 0.6915 m s 1 

a(;@*) = 0.2082, 

r,,(r*) = 0.791x 

0.7845 + j 0.0293 
0.8056 + j 0.0457 
0.8191 * jo.0491 
0.8285 + j 0.0492 

0.91 :C r* i- 1.0; &Jr*) = 10.42X9 (1 - r*)ms ’ 

Ei,(r*) = 7.6833 (I -- r* InI ‘i ’ 

z,,(r*l = 2.313?(1 Pi 

r,,(l.*) = (2.3133,* -- 1.3133) 

The distribution coefficients are calculated to be: 

C.,. - 1.076, C.,, = 1.007 : C’: .~: 1 003, Cd == 0.990 

If only the transverse velocity profiles are taken mto account 
but uniform phase fraction profile is assumed. then : 

(‘, = 1.06: (‘,, 1 Oh 

Results for the mcompressible case are presented in T-able 3 
(the compressible case results are qualitatively similar). 

We observe that for Case (iii) the roots are imaginary for all 
five values of p, whereas for Case (ii) they are imaginary fat 
four of the five values. For Case (i) where both velocity and 
phase fraction profiles have been included however. the roots 
are real for p < 0.5 (corresponds to end-on bubble motion). 

Possible time-dependence of the various distribution 
coefficients raises further important questions unaddressed in 
this paper. 

Sub-volume element-scale informatton regarding trans- 
verse intraphase axial velocity profiles and phase fraction 
profiles were introduced into Eulerian time-averaged, 
volume-averaged (or cross-sectional-averaged) mass and 
axial momentum conservation equations thereby incorporat- 
ing physical effects that would otherwise be lost as a result of 
space-averaging. It was shown that in case of models taking 

(iii) C,, = ( (, rx IO 
C; = C‘:. = I.0 

(m\- ‘) 

i,,i., = 0.7241 kjO.1256 
0.7681 + j 0.126X 
0.7928 + ; 0.1207 
0.8086 f jO.1138 
0.8196 + 10.1074 
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phase compressibilities into account, governing equation sets component in two phases, Inc. J. Multiphase Flow 3, 
which were mixed hyperbolic-elliptic originally could be- 79-82 (1976). 
come strictly hyperbolic due to this improvement alone. In 7. B. T. Chao, W. T. Sha and S. L. Soo, On inertial coupling 
case of models assuming incompressibility, the same equation in dynamic equations of components in a mixture, Int. J. 
sets would become mixed hyperbolic-parabolic and thus still Multiphase Flow 4, 219-223 (1978). 
well-posed as a propagation problem. Optimum solution 8. J. H. Stuhmiller, The influence of interfacial pressure 
methods for such initial value problems can then be used with forces on the character of two-phase flowmodel equa- 
substantial benefits in regard to stability and accuracy. tions, Int. J. Multiphase Flow 3, 551-560 (1977). 
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